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ABSTRACT
Aggregate outputs learning differs from the classical super-
vised learning setting in that, training samples are packed
into bags with only the aggregate outputs (labels for classi-
fication or real values for regression) known. This setting of
the problem is associated with several kinds of application
background. We focus on the aggregate outputs classifi-
cation problem in this paper, and set up a manifold regu-
larization framework to deal with it. The framework can
be of both instance level and bag level for different testing
goals. We propose four concrete algorithms based on our
framework, each of which can cope with both binary and
multi-class scenarios. The experimental results on several
datasets suggest that our algorithms outperform the state-
of-art technique.

Categories and Subject Descriptors
H.3.m [Information Storage and Retrieval]: Miscella-
neous—Learning ; I.2.6 [Artificial Intelligence]: Learn-
ing—Concept Learning ; I.5.2 [Pattern Recognition]: De-
sign Methodology —Classifier design and evaluation

General Terms
Algorithms, Experimentation, Theory

Keywords
Aggregate Outputs Classification, Manifold Regularization

1. INTRODUCTION
The concept of aggregate outputs learning (AOL) was first

proposed by [4]. It is a problem elicited from the applica-
tion of analysis of single particle mass spectrometry (SPMS)
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data. The goal is training to predict quantity of black carbon
(BC) for a certain given single particle. However, the avail-
able instrument is not precise enough and can only measure
the aggregated BC (sum of BC) for bags of training parti-
cles. The problem becomes how to make use of the training
samples and the aggregated BC to train an accurate predic-
tor for single particle. The SPMS problem is of regression
nature, and the authors of [4] also extended it to the classi-
fication setting which is what we concern in this paper. It
is different from classical supervised classification in that,
the training samples are packed into several bags, and only
aggregated labels, which indicate the numbers of samples
from different classes in each bag, are provided. We show
an example of training dataset for this setting in Table 1.

Bag ID Height Weight Aggregated Label
169cm 60kg
160cm 50kg

1 185cm 95kg 2 F, 3 M
175cm 70kg
155cm 45kg
170cm 50kg

2 188cm 100kg 1 F, 2 M
162cm 65kg

Table 1: An example of training dataset for aggre-
gate outputs classification. There are 8 instances,
each with two features of height and weight of a
person. The instances are packed into 2 bags. The
aggregated labels show how many males and females
in each bag.

There is scarce literature of AOL. The original work of
[4] is the only one that strictly follows the setting as far
as we know. In [4], the authors adapt three classical su-
pervised learning algorithms to solve the aggregate outputs
learning problem, namely k-nearest-neighbor (kNN), arti-
ficial neural network (ANN) and support vector machine
(SVM). Both classification and regression versions of the
algorithm are provided. We are only interested in solving
the aggregate outputs classification (AOC) problem in this
paper, and we denote the three classification algorithms as
AOC-kNN, AOC-ANN and AOC-SVM.
In this paper, we set up a manifold regularization frame-

work [2] to cope with the AOC problem, both instance- and
bag-level versions of algorithm are proposed. We aim to use



a function in a Reproducing Kernel Hilbert Space (RKHS)
to predict the label of any sample or the aggregated label of
any bag. Our algorithms can serve the binary classification
as well as the multi-class scenario, which is not covered in
[4] in detail. The experimental results are promising.

2. PROBLEM FORMULATION
For simplicity, we first introduce in the binary classifica-

tion scenario, where each sample belongs to one of the two
classes. Suppose we are given a training dataset with 𝑛 sam-
ples {x1,x2, . . . ,x𝑛}. x𝑖 is the vector representation of the
𝑖th sample. We assume that each of the samples x𝑖 is from
the same input space 𝜒 and 𝜒 ∈ ℝ

𝑑. We also assume that
each x𝑖 is associated with a hidden 𝑦𝑖 that takes the value of
±1 for two different classes. The label space is denoted by
𝜓. However, these labels cannot be observed directly. The 𝑛
samples are aggregated into 𝑚 disjunct bags, and an 𝑚× 𝑛
aggregating matrix 𝐴 is provided. The element of 𝐴 is given
by

𝐴𝑖𝑗 =

{
1 if x𝑗 belongs to the 𝑖th bag
0 otherwise

(1)

We denote the 𝑚 bags as B1,B2, . . . ,B𝑚, with each B𝑖 ∈
𝔅. 𝔅 is the space of the bags. We are also provided with
an 𝑚-dimensional column aggregated labels vector 𝑏, with
its each element 𝑏𝑖 equaling the sum of the hidden labels
associated with the samples in the 𝑖th bag. For example,
given the 𝑖th bag containing 5 positive samples and 3 neg-
ative samples, the value of 𝑏𝑖 is 2. Our goals for the AOC
problem can be both transductive and inductive. For the
transductive goal, we hope to give the label of each training
x𝑖 that is as close to 𝑦𝑖 as possible. Very often, our inductive
goal is simplified to get a good predictive accuracy on a test
dataset with known labels that is from the same distribution
as that of the training set.
The above goals are of instance level, which means that

our trained classifier is supposed to act on single instance.
We also propose to train bag-level classifiers in this paper.
Our bag-level goal can only be inductive, since all the aggre-
gated labels of the training bags are given. We thus expect
our bag-level classifier to give as accurate aggregated labels
on test bags as possible.
Moreover, the bag-level classifier can also serve the goal of

instance classification. All we need is to deem the instances
for testing as bags with only one instance. As shown in
our experiments, they also yield competitive results of error
rate.
When considering the case of multi-class classification, we

only need to add a modification to the formulation men-
tioned above. We suppose 𝑐 classes are taken into account
in the problem, where 𝑐 is an integer and 𝑐 ≥ 3. Rather than
a scalar of value ±1, any of the hidden labels is now repre-
sented by a 𝑐-dimensional 0-1 vector y with its 𝑖th element
indicating whether the associated sample belongs to the 𝑖th
class or not. The vector 𝑏 is replaced by an 𝑚× 𝑐 matrix 𝐵
with 𝐵𝑖𝑗 equaling the number of the samples in the 𝑖th bag
that belongs to the 𝑗th class.

3. INSTANCE-LEVEL MANIFOLD REGU-
LARIZATION FOR AOC

We start with binary classification case first. After choos-
ing a Mercer kernel 𝐾 : 𝜒 × 𝜒 → ℝ, an RKHS ensues. We

denote it as ℋ𝐾 and it is a space of functions 𝜒→ ℝ. There
is also an associated norm ∥ ⋅ ∥𝐾 for ℋ𝐾 . (One can refer to
[5] for more details of Mercer kernel, RKHS and the asso-
ciated norm). We thus want to learn a soft label function
𝑓 ∈ ℋ𝐾 so that

𝑓∗ = argmin
𝑓∈ℋ𝐾

𝐿(𝐴, 𝑏, 𝑓) + 𝛾1∥𝑓∥2𝐾 + 𝛾2∥𝑓∥2𝐼 (2)

where 𝐿(𝐴, 𝑏, 𝑓) is the loss function concerning the aggregate
outputs. ∥𝑓∥2𝐾 is the square of norm in ℋ𝐾 . It penalizes
the complexity of 𝑓 in ℋ𝐾 . ∥𝑓∥2𝐼 is a term that penalizes
the unsmoothness of 𝑓 on the given samples. 𝛾1 and 𝛾2 are
two positive parameters that control the tradeoff between
the terms. We explain each of the three terms as follows.
For the convenience in the later optimization process, we

use two kinds of loss function 𝐿(𝐴, 𝑏, 𝑓) in this paper

𝐿1(𝐴, 𝑏, 𝑓) =

𝑚∑
𝑖=1

𝑈𝜖((𝐴𝑓)𝑖 − 𝑏𝑖) (3)

𝐿2(𝐴, 𝑏, 𝑓) = (𝐴𝑓 − 𝑏)𝑇 (𝐴𝑓 − 𝑏) (4)

where

𝑈𝜖(𝑡) = 𝐻−𝜖(𝑡) +𝐻−𝜖(−𝑡) (5)

𝐻𝜃(𝑡) = max(0, 𝜃 − 𝑡) (6)

𝐻𝜃(𝑡) is the widely used hinge loss function and 𝐿1(𝐴, 𝑏, 𝑓)
can be comprehended as a vector version of the double sided
hinge loss. 𝐿2(𝐴, 𝑏, 𝑓) is a quadratic loss.
By manipulating the expanded version of representor the-

orem in [2], the learned function 𝑓 shall have the form of

𝑓(x) =
𝑛∑

𝑖=1

𝛼𝑖𝐾(x𝑖,x) (7)

As a result,

∥𝑓∥2𝐾 = 𝛼𝑇𝒦𝛼 (8)

where 𝒦 is the kernel matrix defined on the training dataset.
𝛼 = [𝛼1, 𝛼2, . . . , 𝛼𝑛]

𝑇 is the vector of representing weights.
Using the vector form one could write

𝑓 = 𝒦𝛼 (9)

where 𝑓 is the vector of the values by imposing 𝑓 on the
training samples.

∥𝑓∥2𝐼 term is used to penalize the unsmoothness of func-
tion 𝑓 . We use

∥𝑓∥2𝐼 = 𝑓𝑇ℛ𝑓 (10)

where ℛ is the graph Laplacian regularizer ([2]).
Thus, when using 𝐿1 as loss function, (2) becomes the

following optimization problem

min
𝛼

𝑚∑
𝑖=1

𝑈𝜖((𝐴𝒦𝛼)𝑖 − 𝑏𝑖) + 𝛾1𝛼
𝑇𝒦𝛼+ 𝛾2𝛼

𝑇𝒦ℛ𝒦𝛼 (11)

when 𝐿2 is used, it becomes

min
𝛼
(𝐴𝒦𝛼− 𝑏)𝑇 (𝐴𝒦𝛼− 𝑏) + 𝛾1𝛼

𝑇𝒦𝛼+ 𝛾2𝛼
𝑇𝒦ℛ𝒦𝛼 (12)

We denote the two algorithms corresponding to (11) and
(12) as AOC-manifold-il-L1 and AOC-manifold-il-L2.
For the optimization problem (11), it can be reformulated

as



min
𝛼,𝜂

𝑚∑
𝑖=1

𝜂𝑖 + 𝛼𝑇 (𝛾1𝒦+ 𝛾2𝒦ℛ𝒦)𝛼 (13)

subject to

𝜂𝑖 ≥ 0,∀𝑖 = 1, 2, . . . ,𝑚 (14)

−𝜖− 𝜂𝑖 ≤ (𝐴𝒦𝛼− 𝑏)𝑖 ≤ 𝜖+ 𝜂𝑖, ∀𝑖 = 1, 2, . . . , 𝑚 (15)

This is a standard quadratic optimization setting and can
be solved efficiently.
The solution of the optimization problem (12) can be writ-

ten in an analytical form

𝛼 = (𝒦𝐴𝑇𝐴𝒦+ 𝛾1𝒦 + 𝛾2𝒦ℛ𝒦)†𝒦𝐴𝑇 𝑏 (16)

Now, let us consider the multi-class classification scenario.
We need to modify our formulation (2) to

𝐹 = [𝑓1, 𝑓2, . . . , 𝑓𝑐]

= argmin
𝑓𝑖∈ℋ𝐾 ,∀𝑖=1,2,...,𝑐

{
𝐿(𝐴,𝐵, 𝐹 )

+𝛾1

𝑐∑
𝑖=1

∥𝑓𝑖∥2𝐾 + 𝛾2

𝑐∑
𝑖=1

∥𝑓𝑖∥2𝐼
}

(17)

Similar with (3) and (4), we adapt the two loss functions
as

𝐿1(𝐴,𝐵, 𝐹 ) =
𝑚∑
𝑖=1

𝑐∑
𝑗=1

𝑈𝜖((𝐴𝐹 )𝑖𝑗 −𝐵𝑖𝑗) (18)

𝐿2(𝐴,𝐵, 𝐹 ) = 𝑡𝑟
(
(𝐴𝐹 −𝐵)𝑇 (𝐴𝐹 −𝐵)

)
(19)

By using the representor theorem, the optimization prob-
lems using the two different loss functions become

min
𝛼

𝑚∑
𝑖=1

𝑐∑
𝑗=1

𝑈𝜖((𝐴𝒦𝛼)𝑖𝑗−𝐵𝑖𝑗)+𝛾1 𝑡𝑟(𝛼
𝑇𝒦𝛼)+𝛾2𝑡𝑟(𝛼𝑇𝒦ℛ𝒦𝛼)

(20)

min
𝛼
𝑡𝑟((𝐴𝒦𝛼−𝐵)𝑇 (𝐴𝒦𝛼−𝐵)) + 𝛾1𝑡𝑟(𝛼

𝑇𝒦𝛼)
+𝛾2𝑡𝑟(𝛼

𝑇𝒦ℛ𝒦𝛼) (21)

These two optimization problems can be solved similarly
to the binary case, and we omit the details for briefness.

4. BAG-LEVEL MANIFOLD REGULARIZA-
TION FOR AOC

For bag-level classifier in binary classification case, we
want to learn a function 𝑔

𝑔 = argmin
𝑔∈ℋ𝐾𝑏

𝐿(𝐴, 𝑏, 𝑔) + 𝛾1∥𝑔∥2𝐾𝑏
+ 𝛾2∥𝑔∥2𝐼 (22)

Where 𝐾𝑏 : 𝔅 × 𝔅 → ℝ is a Mercer kernel. ℋ𝐾𝑏 is the
associated RKHS with a norm ∥ ⋅ ∥𝐾𝑏 . Similar with the
instance-level scenario, we can use two different loss func-
tions

𝐿1(𝐴, 𝑏, 𝑔) =
𝑚∑
𝑖=1

𝑈𝜖(𝑔𝑖 − 𝑏𝑖) (23)

𝐿2(𝐴, 𝑏, 𝑔) = (𝑔 − 𝑏)𝑇 (𝑔 − 𝑏) (24)

The two optimization problems guided by representor the-
orem can be written as

min
𝛽

𝑚∑
𝑖=1

𝑈𝜖((𝒦𝑏𝛽)𝑖 − 𝑏𝑖) + 𝛾1𝛽
𝑇𝒦𝑏𝛽 + 𝛾2𝛽

𝑇𝒦𝑏ℛ𝑏𝒦𝑏𝛽 (25)

min
𝛽
(𝒦𝑏𝛽− 𝑏)𝑇 (𝒦𝑏𝛽− 𝑏)+ 𝛾1𝛽

𝑇𝒦𝑏𝛽+ 𝛾2𝛽
𝑇𝒦𝑏ℛ𝑏𝒦𝑏𝛽 (26)

Algorithms associated with (25) and (26) will be men-
tioned as AOC-manifold-bl-L1 and AOC-manifold-bl-L2. Here
𝒦𝑏 is the kernel matrix on the training bags. We use the set
kernel from [3] and write

𝒦𝑏 = 𝐴𝒦𝐴𝑇 (27)

where 𝒦 is the instance-level kernel matrix we used before.
ℛ𝑏 can be calculated similarly.
The solutions of (25) and (26) can be given by an opti-

mization problem and an analytical form, similarly to case
of instance-level classifier.
The bag-level classifiers for the multi-class scenario can be

constructed analogously. We omit the derivation here due
to the lack of space.

5. EXPERIMENTS AND DISCUSSION
In this section, we conduct our experiments on ionosphere

from UCI datasets ([1]). It is originally collected for su-
pervised learning. There are no natural bags constructed
specifically for the AOC problem. Thus we need to create
the aggregation ourselves. There are two parameters 𝑟 and
𝑛𝑏 we vary for the aggregation in our experiments. 𝑟 is the
“randomness”within bags ([4]) and 𝑛𝑏 is the number of sam-
ples per bag.
Our algorithms include AOC-manifold-il-L1, AOC-manifold-

il-L2, AOC-manifold-bl-L1 and AOC-manifold-bl-L2. We
have realized AOC-kNN and AOC-ANN in [4] for compar-
ison. We did not compare with AOC-SVM mainly because
it is too time-consuming. For the ionosphere dataset with
351 samples for training, the problem cannot be solved in
one day.
We evaluate the performances of the six algorithms on

both instance level and bag level. For the instance-level
evaluation, we conduct both transductive and inductive ex-
periments. We list these settings and descriptions in Table
2, where “norm of error” criterion for bag-level setting is
∥𝑔 − 𝑏∥2 for binary case and ∥𝐺−𝐵∥𝐹 for multi-class case.
Each setting of our experiments is repeated 100 times to

give statistical results. The difference between each running
time is due to the random swap indicated by 𝑟 and the ran-
domly divided dataset for training and testing.

Ionosphere is a dataset targeting free electrons in the iono-
sphere. There are 351 samples in the dataset, and each one
has 34 features. The samples are labeled with “Good” or
“Bad”, indicating whether the data reveals the structure of
the ionosphere or not. The results are reported in Fig. 1–3
and Table 3. AOC-manifold-bl-L1 and AOC-manifold-bl-L2
have very similar performances on this dataset, and their
curves overlap for the most part.
From the results of the experiments, we reach the follow-

ing conclusions:

1. Our four algorithms based on manifold regularization
are generally better in error rate for instance-level set-
ting and norm of error for bag-level setting than AOC-
kNN and AOC-ANN.



Experiment Setting Training Samples Test Samples Criterion for Evaluation
Instance-Level Transduction Whole dataset Whole dataset Error Rate
Instance-Level Induction 80% of the whole dataset The rest 20% of the dataset Error Rate
Bag-Level Induction 80% of the whole dataset The rest 20% of the dataset Norm of Error

Table 2: Three experiment settings and their descriptions
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Figure 1: Results of experiments on ionosphere, with the instance-level transduction setting. 𝑛𝑏 = 5, 10, 20
respectively.
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Figure 2: Results of experiments on ionosphere, with the instance-level induction setting. 𝑛𝑏 = 5, 10, 20
respectively.
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Figure 3: Results of experiments on ionosphere, with the bag-level induction setting. 𝑛𝑏 = 5, 10, 20 respectively.

Algorithm Time/s
AOC-kNN 0.0244 ± 0.0113
AOC-ANN 6.0082 ± 0.5178

AOC-manifold-il-L1 0.1733 ± 0.0088
AOC-manifold-il-L2 0.3176 ± 0.0117
AOC-manifold-bl-L1 0.0513 ± 0.0175
AOC-manifold-bl-L2 0.0421 ± 0.0165

Table 3: Average run time for the six algorithms
on ionosphere, with the instance-level transduction
setting.

2. For the run time of the algorithms, AOC-kNN is the
fastest. Our four algorithms follow closely, with bag-
level ones better. AOC-ANN is much slower.

3. There is no definite conclusion about which of the
instance- and bag-level algorithms is better. It de-
pends on the dataset and setting.

4. Algorithms using 𝐿1 and 𝐿2 loss function yield similar
results in error rate or norm of error. There could be
some differences in the run time.

6. CONCLUSION
In this paper, we set up a manifold regularization frame-

work for the AOC problem, and propose four new algorithms
for both instance- and bag-level settings. Our algorithms
can be used for both binary and multi-class cases, while the
latter one is not specified in the former works. Also, we
conduct experiments on several datasets, with the results
suggesting the advantage of our methods.
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